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This document explains Lagrangian points (a.k.a. Lagrange points, L-points or libration points)
in a simple manner. Lagrangian points are the specific points where -when put- a relatively light
object can maintain its position relative to the other two heavy celestial bodies (one of which rotate
around the other one) in space. Sun and Earth can be used to conceptualize the large celestial
bodies, and satellites as light objects (relatively). The main contribution on the light object’s
motion comes from the gravitational forces which arise from the two heavy bodies. However, when
switched to rotating frame of reference for convenience, some other factors (e.g. Coriolis force) have
effect on the object at different Lagrangian points. In this paper, the most significant properties of
Lagrange points are to be discussed, such as the stability conditions of different Lagrangian points,
mathematical derivations of them, their discovery, relation to three body problem and why these
points are being used in spaceflight applications. Unless otherwise is specified, celestial bodies are
to be considered by default throughout the article.

DEFINITION OF LAGRANGE POINTS

Consider two large celestial bodies (named as B1, B2)
orbiting around each other and a relatively small object
S (Fig. 1). According to Newton’s law of universal
gravitation, every two particle (in any size) attracts
each other with a force which is directly proportional to
the product of their masses and inversely proportional
to the square of the distance between them [1]. A
Lagrange point is a position of the small object S in
space, where it maintains its position relative to B1 and
B2, mainly due to the gravitational forces exerted onto
it by B1 and B2. For any two large celestial bodies
orbiting, there exists exactly 5 Lagrange points. At any
of these points, the small object orbits in an unchanging
pattern with the two heavy bodies. As a requisite of this
condition, the small object orbits with the same period
which the large objects rotate around each other. The
restriction of the body which is to be put at one of the
Lagrange Points near two large bodies being small (more
accurately, being light) is due to the force it exerts onto
the large bodies. This force it exerts onto large bodies
is negligible for them because of their large masses. By
Newton’s 3rd Law of Motion, the force exerted by any of
the two objects onto another is equal in magnitude [1],
e.g., FB1→ C = FC→B1 . Thus, the same amount of force
is exerted onto it; however, this force has a great effect
on it because of its small mass. This is a direct result of
Newton’s 2nd Law of Motion [1]. A more detailed and a
mathematical explanation – derivation will be provided
in the upcoming sections.

HISTORICAL BACKGROUND - THREE-BODY
PROBLEM

The conceptual starting point of Lagrange Points is the
Three-body Problem (more specifically, Euler’s Three-
body Problem), put forward by the Swiss mathemati-
cian, physicist, astronomer, logician and engineer Leon-
hard Euler, who lived in the 18th Century [2]. Even
we state it directly as Three-body Problem, there exists
types of Three-body Problem which are nothing but the
restricted cases of the General Three-body Problem. Be-
fore investigating these types in detail, one should note
that the General Three-body Problem is still unsolved de-
spite the development of mathematical calculation meth-
ods and enhanced computers, because no closed-form so-
lution exists for all sets of initial conditions. Hence, the
best solution one can obtain is a numerical one, and even
in that case solution is likely to be chaotic. [3].

FIG. 1: B1: Sun, B2: Earth, S: Satellite
Drawing is not to scale.
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General Three-body Problem

To start with, let us state the General Three-body
Problem. Consider the three masses m1, m2, m3 and
the vectors x1, x2, x3 denoting their positions, respec-
tively. If we are to write Newtonian equation of motion
for this system we get:

ẍi = −Gmj
xi − xj

|xi − xj|3
−Gmk

xi − xk

|xi − xk|3
(1)

Now, one can switch to center of mass (CM) coordi-
nate system1. for convenience. At the center of mass
coordinate system, as the name implies, center of the to-
tal body’s mass is at the center of the coordinate system
we have switched to. Thus, for all the cases we use the
CM coordinate system we get the following equations:

3∑
i=1

mixi = 0 ,

3∑
i=1

miẋi = 0 (2)

where the equation on the RHS is nothing but the deriva-
tive of the one at the LHS.

At this point, it is necessary to note that we assume
that there is not any external force nor torque effecting
on the system, which implies energy and angular mo-
mentum are conserved. Also, some more eliminations
can be made, such as eliminating time and fixing the line
of nodes, which we will not get into detail here. In the
end, it is possible to reduce the order of the system to 4
at most, which still makes the problem unsolvable. [5]

It is possible to write the equations of motion in a
more symmetrical manner by denoting the positions of
the masses with the vectors that show the relative posi-
tions of the particles to each other, as it is depicted in
the Fig. 2. Accordingly, Eq. (1) and Eq. (2) turns
into:

s̈i = −GM
si
si

3
+ miG (3)

FIG. 2: Position vectors in the CM system and relative
position vectors for the three-body problem. [4]

1 One can refer to S. Thornton and J. Marion, Classical Dynam-
ics of Particles and Systems (Brooks/Cole, 2004) for details of
changing coordinate system and CM coordinate system.

Euler’s Solution to Three-body Problem

Second, let us consider the Euler’s solution to the Gen-
eral Three-body Problem. Euler’s solution considers the
solution of the Three-body Problem for the masses which
are colinear, i.e., masses that lie on the same line. For
any two points, there is always a line passing through
them. However, since there are three points (masses) in
the Three-body Problem, putting them on a line restricts
the solutions. Therefore, the Euler’s solution gives only
three points, which is to be generalized to 5 by Lagrange
in the following years after Euler published his solution.

Let m2 to be mass between the other two masses, with-
out loss of generality. Therefore, s1, s2 and s3 become
multiples of each other since they are vectors with same
/ different lengths at the same or the opposite directions.
This relation can be expressed in the form:

s1 = λs3 , s2 = −(λ+ 1)s3 (4)

Therefore, we can express all vectors in terms of scalar
multiples of one of them. Then, we can write the New-
tonian equation of motion. As a result, Eq. 3 turns
into:

s̈3 = −m2 +m3(1 + λ)-2

m2 +m3(1 + λ)

GMs3

s3
3

(5)

Therefore, we get the solution that the masses move
along confocal ellipses, which have the same eccentricity
and same orbital period around CM. Importantly, they
are always lined up. It has not been discussed yet, but
in the section on stability, it will be referred briefly that
Euler’s solutions are unstable. Therefore, any small per-
turbation corrupts the system. However, it is still much
more easier for small objects to maintain their position
on Euler’s solutions rather than trying to do it on any
arbitrary point.

FIG. 3: Collinear solutions. Masses m1, m2, m3 are all
on the same line. [4]
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Lagrange’s Solution to Three-body Problem

Finally, we consider Lagrange’s solution. Joseph-Louis
Lagrange was an Italian astronomer and mathematician,
who was also the successor of Euler as the director of
mathematics at the Prussian Academy of Sciences in
Berlin, Prussia [6]. He considered the case where one
of the masses in Three-body Problem was much lighter
than the other two. As a result, in addition to Euler’s
three colinear solutions, he found out two other equilat-
eral solutions for any three masses with circular orbits.

The equilateral case is equivalent to setting G in Eq.
( 3) to 0. If s1, s2, s3 form a equilateral triangle, the
vectoral summation gives this result since all |si| have
the same magnitude and the overall shape is a closed
loop. As a result, he decoupled the equations for si. For
bounded cases, these decoupled equations have solutions
that trace ellipses. The conclusion of his attempts is that
when the conditions he set are satisfied, particles follow
an ellipse of the same eccentricity with their common cen-
ter of mass located at the focal point of all three orbits.
Thus, all masses have the same period while they keep
up the shape of an equilateral triangle even the triangle
changes size and rotates.

In contrast to Euler’s solutions, the points Lagrange
found out are at the stable equilibrium, with the restric-
tion that one of the masses must be much heavier than
the other two. Fig. 1 is an example of this case, where
the mass of the sun is much greater than the other two
masses. However, one should notice that the masses in
Fig. 1 are colinear, which is an example of one of the
three points found out by Euler, not Lagrange. The sta-
bility conditions of these points are to be examined later
in this paper.

Even Euler found out the first three solutions to Three-
body Problem, in general, these five special solutions are
named after Lagrange. So, when Lagrange Points are
considered, one refers to the five of the solutions actually
discovered by both Euler and Lagrange. To be more
specific, these points are named as L1, L2, L3, L4 and L5.
These Lagrange points are indicated on the Fig. 4 for the
Sun-Earth system, though one should remind herself that
Sun-Earth system is not the only case that fits Lagrange’s
Three-body Problem solution.

EQUATIONS AND EXPLANATIONS OF EACH
OF THE LAGRANGE POINTS

Consider two massive objects in orbits around their
center of mass. Since we are working with Lagrange
Points, we always assume that one of the masses is al-
ways much larger than the other large mass (how large it
should be is not a fixed number for all points and should
be considered separately). Now, we add a third body,
who has a negligible mass when compared to the other

FIG. 4: Lagrange Points in L1, L2, L3, L4, L5 in the
Sun - Earth system.

two massive bodies. We are now to examine the points
where when we put this body, it stays relatively station-
ary with respect to the massive bodies, i.e., it will have
the same periodicity (thus, angular velocity) as them.

When working with Lagrange Points, it is convenient
to switch to a rotating coordinate system. We have
stated that two massive objects orbit around their center
of mass. If we set our coordinate system rotating with
the same angular velocity Ω as they do and set its origin
to the center of mass of the two large bodies, then one
sees them motionless. This is what we want; moreover,
we want to find a position where the small mass can stay
motionless too. Since we have switched to a rotating
frame, we will have pseudo-forces, so effects of centrifu-
gal and coriolis forces must be taken into consideration.
Especially, they will become important when we examine
the stability conditions of the Lagrange Points. Then, in-
stead of the the equation of force 1, we use the equation
of effective force in a frame rotating with angular velocity−→
Ω :

−→
F Ω =

−→
F − 2m(

−→
Ω × −̇→r )−m

−→
Ω × (

−→
Ω ×−→r ) (6)

where the first correction is the Coriolis force and the
second one is the centrifugal force. This equation can be
derived from the generalized potential:

UΩ = U −−→ν · (
−→
Ω ×−→r ) +

1

2
(
−→
Ω ×−→r ) · (

−→
Ω ×−→r ) (7)

where a contour plot of it can be seen in the Fig. 5, which
might be helpful for visualization.

In the case where z axis of the cartesian coordinate
system is aligned with the angular velocity, we have:

−→
Ω = Ωk̂ (8)

−→r = x(t)̂i+ y(t)ĵ (9)

−→r1 = −αRî (10)

−→r2 = βRî (11)

where α =
(

M2
M1+M2

)
, β =

(
M1

M1+M2

)
in the above equa-

tions.
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We want to find static equilibrium positions, so we set

velocity v = −̇→r to zero and seek for solutions. Using
symmetry about the x-axis, for the case α << 1, with
approximation we get the first three Lagrange Points:

L1 :
(
R[1− (

α

3
)

1
3 ], 0

)
(12)

L2 :
(
R[1 + (

α

3
)

1
3 ], 0

)
(13)

L3 :

(
−R[1 +

5

12
α], 0

)
(14)

To find L4 and L5, one needs to balance the centrifu-
gal forces acting upon them. Centrifugal force is in the
direction of the vector starting at the origin and pointing
outward. Gravitational forces are to be used to balance
the centrifugal force. As a result, when the force acted
on the object at L4 and L5 are seperated into its com-
ponents, we expect to observe that the net force acting
perpendicular (to the direction of rotation) and the net
force acting parallel (to the direction of rotation) are zero.
These correspond to the following equations:

FΩ
⊥ = αβyΩ2R3

(
1

((x−Rβ)2 + y2)
3
2

− 1

((x+Rα)2 + y2)
3
2

)
(15)

FΩ
‖ = Ω2 x

2 + y2

R

(
1

R3
− 1

((x−Rβ)2 + y2)
3
2

)
(16)

Setting 15 and 16 equal to 0, we get the remaning
two Lagrange points:

L4 :

(
R

2

(
M1 −M2

M1 +M2

)
,

√
3

2
R

)
(17)

L5 :

(
R

2

(
M1 −M2

M1 +M2

)
,−
√

3

2
R

)
(18)

STABILITY STATES OF THE LAGRANGE
POINTS

From the effective potential contour plot Fig. 5, it is
usually clear which Lagrange points are stable and which
are not. We consider the hills, valleys and saddles at
the plot. However, it may mislead one. So, following
the standard procedure, which is perturbing each equi-
librium solution with a small amount, gives us the reliable

information. Thus, we replace x, y, z by their perturbed
versions with small amounts:

x = xi + δx (19)

y = yi + δy (20)

z = δz (21)

where xi, yi represent the i th Lagrange Points and
δx, δy, δz are small perturbations about these points.

Oscillatory or decaying solutions can be interpreted as
stable solutions; whereas, exponentially diverging solu-
tions lead to unstability. When the x, y, z stated in the
Eq. 19 are put into the Eq. 7 (Calculations won’t be
included in here for simplicity. The reader can refer to
the document The Lagrange Points [7] by Cornish for
detailed calculations.), L1, L2 and L3 turns out to be
saddle points, where we get positive real roots meaning
that small perturbations lead to exponential growth (un-
stable). The outcome is different for L4 and L5. As a
result, we get pure imaginary solutions, which implies
stability as long as the ratio of two heavy masses ex-
ceeds 24.96 [7]. These points turn out to be local max-
ima points, which usually imply unstable equilibrium.
However, due to coriolis force, these points are actually
stable. When a mass situated at L4 and L5 perturbed
with small amount, it tends to slide down the potential.
When it does so, its speed increases and the Coriolis force
pushes it back to the equilibrium point.

FIG. 5: Generalised potential - contour plot [7]
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Therefore, it is expected in the universe to observe ob-
jects at the L4 and L5 points for different celestial object
couples. In fact, this is a common situation that these ob-
ject are named as Trojans. Some of the natural objects
found at L4 and L5 points for different celestial object
couples are:

• Sun-Jupiter system has trojans, named after the
famous Greek poet Homer’s Iliad.

• Sun-Neptun system has many trojans at L4 and L5.

• Sun-Earth system contains interplanetary dust and
asteroids located at L4 and L5.

• Earth-Moon system contain interplanetary dust,
named as Kordylewski clouds at L4 and L5.

• Saturn-Tethys (Saturn’s moon) system contains
two smaller moons located at L4 and L5 points.

Although we have stated that L1, L2 and L3 are unsta-
ble equilibrium points and they may seem useless when
there are L4 and L5 which are completely stable, it is not
the case in real life applications. When space missions
carried out by NASA, ESA and CNSA are considered, in
fact, one observes that L1 and L2 are in high demand for
Sun-Earth and Earth-Moon systems. Also, future mis-
sions are mostly planned to send satellites at L1 and L2

points. But why is it preferred to send satellites to unsta-
ble equilibrium points? In fact, it is true that L1,L2,L3

are unstable equilibrium points, but they are nonethe-
less equilibrium points. So, they are as practical as L4

and L5 as long as there is no perturbation. Even there is
small perturbations, the cost of keeping them around the
equilibrium point is almost insignificant. Therefore, for
some other advantages of L1, L2 (such as quasi-periodic
Lissajous orbits2 at these points, which is why space mis-
sions mostly consider them as practical), the cost is in-
significant. As an example, the popular James Webb
Space Telescope is planned to be sent to L2 in the Sun-
Earth system.

CONCLUSIONS

This paper provides the basic ideas and derivations re-
lating to Lagrange Points by considering the historical
development of Three-body Problem, Lagrange’s contri-
butions and how these special points are being used for
space applications. Rather than going through all the
calculations and examples, the notion behind each step
that leads to the solution and the important examples
to comprehend the subject have been included. In depth
calculations and topics related to the subject but not nec-
essary to comprehend it are provided in the references
for further reading. The most important aim had been
to clearly explain what Lagrange Points are, how they
were discovered and for what applications they are being
used today. I thank my PHYS201: Classical Mechan-
ics teacher Fethi M. Ramazanoğlu, who taught me the
wonders of Physics and has always tried to arouse his
students’ curiosity.
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