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Question 5.1 
Build knowledge on implementing sequential circuits with VHDL: Watch the video 
lecture 20 on finite state machine design. Listing 1 includes a sample 
implementation of the unsigned division FSM example in the tutorial video. Study, 
implement and modify it to perform 4-bit signed  division in 2’s complement 
system. 
 
4-bit signed division ↔ Range = {−8,−7,−6, … − 1, 0, 1, …  7} 
The procedure to be followed is as follows: 

1. Take 2 numbers in signed 2’s complement system, dividend and divisor. 
2. Now, consider the following 4 cases: 

i. Both positive (both MSBs are 0) 
ii. Both negative (both MSBs are 1) or 

iii. Dividend is negative (MSB=1) and divisor is positive (MSB=0). 
iv. Dividend is positive (MSB=1) and divisor is negative (MSB=0). 

3. If both are positive, the operation is as follows: 
• First, introduce a counter (Q), which will be the quotient at the end. 
• Take 2’s complement of divisor (A) and sum it with dividend (B) (in 

other words, subtract divisor from dividend). Assign this result to B. 
Increase Q by 1. 

• Check whether B is smaller than A. If 𝐵𝐵 ≥ 𝐴𝐴, then repeat the operation 
above. Else, division is finished. 

• When division is finished, Q is the quotient, and B is the remainder. 
4. If both are negative, take 2’s complement of both numbers and perform the 

operation for the case both positive. At the end, take 2’s complement of the 
remainder to fix the sign issue. 

5. If dividend is negative, and divisor is positive,  take 2’s complement of 
dividend one and perform the operation for the case both positive. At the 
end, take 2’s complement of the quotient and remainder to fix the sign issue. 

6. If dividend is positive, and divisor is negative,  take 2’s complement of 
dividend one and perform the operation for the case both positive. At the 
end, take 2’s complement of the quotient to fix the sign issue. 

Before presenting my code, let me explain the code given in the lab manual. 
 
Sample Finite State Machine (FSM) VHDL code: 
First, with the following declaration in the beginning of the code, the program 
implements the functionality of signed and unsigned numbers. We will use it in 
the upcoming parts of this code. 

 
 



Next, inputs and outputs are defined. 

 
Here, MCLK refers to the main clock, whose frequency is N in the second line. A, B 
are two 4-bit input numbers. Start is the initiator of the design, and RES is the 
output to be shown. The interesting part is remainder is not shown, but calculated 
inside the code. 
 
We then set intermediate signals and some constants in the architecture part. 

 
CLK_DIV is the Clock Divider that we have learnt and used in the previous lab. It 
will be implemented in the upcoming process part. X, Y, Q, R are declared, and 
assigned to some values which are not so important at this point. In the next 
sections, we X and Y will be used to represent A and B inputs as unsigned integers, 
whereas Q and R will be quotient and remainder at the end. 
There are 3 states: INIT, COMPUTE and DONE. One Hot state assignments of them 
are made here. Also, a State intermediate signal is created, which is and will always 
be assigned to the current state of the system. 
 
Next, the operations begin. RES is assigned to the quotient, which is the result of 
the division. At this point, it is set to 0. 

 



Next, we divide the main clock. 

 
This is a process sensitive to MCLK. So, at every change of MCLK, this process runs. 
Since MCLK has a high frequency, it runs many times. A variable Counter is 
declared in this code. This Counter is increased by 1 at every rising edge of the 
clock cycle. In short, with the help of the if statement inside, main clock has a rising 
edge 50*10^6 times in a second, and every 0.001 seconds, CLK_DIV is rising or 
falling depending on its current state. This way, we have set up a new clock to be 
used. Main clock was changing every 0.000000002 seconds which is too fast. This 
new clock changes every 0.001 seconds. 
 
Now we proceed to the division process. 

 

 



 
First, we note the CLK_DIV part. We have noted that CLK_DIV is changed every 
0.001 second. therefore, its rising edge occurs every 0.0005 seconds. At these 
rising edges, we check state and perform operations based on the current state. 
At the INIT state, inputs A and B are introduced as unsigned integers and assigned 
to X and Y. After this process, a START signal is expected. As long as this START 
signal is not received, state is not changed and stays at the INIT state. 
However, if START signal is received, state is set to compute. At this state, the 
introduced algorithm is used. This algorithm is a simple but a working one, and we 
will implement the 4-bit signed division algorithm mainly using this. In its core, 
division is finding out how many divisors inside the dividend. We subtract divisor 
one at a time and continue to do so as long as the result of this division does not 
give a negative number. Therefore, if we count how many times this subtraction is 
repeated, we find out the quotient and the remained subtraction becomes 
remainder. Depending on the possible result of this subtraction, next state is 
determined. When there is no possible subtractions without getting negative 
outputs, we set state to DONE. 
At this DONE state, remainder is assigned to the intermediate signal R, though it is 
not assigned to any LEDs or any other output ports. Also, state is set to INIT so that 
new divisions can be done. 
When others part is crucial. If a glitch occurs, or any other unexpected stuff, current 
state may turn out to be something which is not assigned by us. In such case, we 
force the system to go back to INIT state so that we can keep the program running. 
Now, I move onto my design. 



My 4-bit signed division in 2’s complement system VHDL Code: 
The code I am going to provide below is written by me to perform division 
operation with 4-bit signed integers. Anything that is necessary is already 
explained at the beginning of this section. Nonetheless, after displaying the code, I 
will make some entries on code implementations of the algorithms I have already 
provided. After explaining the code, I will provide simulation results for necessary 
test cases. At last, I will put some pictures taken during the run on the FPGA board. 
Before starting, let me note that I have modified the code pretty much. I will go 
through necessary details. Let me start by noting that I am also showing the 
remainder result by using LEDs. So, I reserve 4 rightmost LEDs for the result RES 
and 4 leftmost LEDs for the remainder REMA. 

 

 



I have added an extra output variable REMA, which will be output in the end. I have 
also set REMA’s and RES’s initial value to 0000. This was missing in the example 
code in the manual, which I believe is an undesired situation (due to uninitialized 
values). To calculate the period using the frequency, I have used the relation 𝑓𝑓 =
1/𝑇𝑇. Therefore, MCLK has a 𝑇𝑇𝑐𝑐 = 20 𝑛𝑛𝑛𝑛. 

 
I start by assigning a value to CLK_DIV. This was missing in the example code 
provided in the lab manual, which makes CLK_DIV uninitialized. This is not 
something desired, so I set it to 0. I have also defined two new intermediate signals 
XS and YS. They will be storing the Signs of X and Y, correspondingly. 
Furthermore, I define two more states, and modify some of the states. In total, I 
have 5 states with the state codes provided above. In fetch state, I assign A and B 
to X and Y and store the sign information of A and B. In init state, I make the 
negative to positive conversion. compute state is the same. In convert state, I make 
the necessary conversions, depending on the sign combinations of the input 
numbers, and assign X to R. In the state done, RES and REMA are updated with Q 
and R. 

 



This part is also unchanged: CLK_DIV assignment is the same. The important part 
here may be the period of CLK_DIV. MCLK starts from 0 and has a periodicity of 10 
ns. Therefore, counter becomes 1 at 10ns, 2 at 30 ns, 3 at 50ns, etc. When counter 
becomes N/1000-1=49999, CLK_DIV negates. From the sequence, we can deduce 
that 𝑡𝑡 = (2 𝐶𝐶𝐶𝐶𝑢𝑢𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 − 1) × 10 ns. Therefore, we find 𝑇𝑇/2 = 999,970 ns. So, period 
of CLK_DIV is 1.999,940 ≈ 2 𝑚𝑚𝑚𝑚. You can verify this result by observing the 
simulation results in the upcoming sections. 

 
In this fetch state, X and Y are assigned. Note that here, the assignments are signed. 
In the manual example, since division was unsigned, they were unsigned. Also, XS 
and YS are assigned with the MSB of the numbers entered. Q is set to 0000 and to 
go to the next state in the upcoming CLK_DIV cycle, State is set to init. 

 
If the Start button is pressed and Y is not 0, division starts. Else, it goes back to the 
fetch state, giving the user another chance to enter a nonzero divisor. 



To be able to use the same division algorithm for the unsigned binary numbers, I 
convert negative numbers to positive numbers in the init state after being stored 
their signs in the fetch state. Now, the program can move onto the compute state, 
where exactly the same computing algorithm is used. After compute state is 
completed (it may repeat for a few times), program continues to the convert state.  

 
This state may be the most important one in terms of experimenting and deducing 
a general pattern. By trying for the numbers in the range {−8,7}, I have deduced 
the following results for the division: 
 
Table 1: Signed division rules 

Operation Remainder Quotient 
+/+ + + 
+/− − + 
−/+ + − 
−/− − − 

 
At the init state, I had converted all negative numbers to positive to be able to use 
the unsigned division algorithm. Therefore, in this convert state, I do these 
conversions to fix the sign issues. As expected, there is no change in the +/+ case 
since the algorithm is mainly constructed for this case. I directly set the value of X 
to R. In the -/- case, both remainder and quotient must be negative. Since I have 
converted negative to positive in the init state, the results I get are always positive. 
So, I assign -X to R, and convert Q to -Q. The same logic goes for +/- and -/+ cases. 

 



At last, done state is performed. In this state, Q is assigned to the result output 
variable RES after being converted to STD_LOGIC_VECTOR and R is assigned to the 
remainder output variable REMA after being converted in the same manner. The 
reason for the conversion is that RES and REMA are defined as 
STD_LOGIC_VECTORs, whereas Q and R are signed numbers. After all is done, 
program goes back to fetch state to get new numbers for division in the next clock 
cycles. There is also an extra case which may occur due to glitches or something 
else. In this case, program goes back to the fetch state, which is a safe option. 
 
Below, I provide the pin assignments. It is mostly unchaged. The only addition is 
that I have added the 4 leftmost LEDs to show the result of the remainder. 
 
 
 
 

PIN ASSIGNMENTS (.UCF) 

NET "MCLK" LOC = "P40"; # CLOCK 
 
NET "Start" LOC = "P32"; # BTN0 
 
NET "A<0>" LOC = "P94"; # SW4 
NET "A<1>" LOC = "P90"; # SW5 
NET "A<2>" LOC = "P88"; # SW6 
NET "A<3>" LOC = "P85"; # SW7 
 
NET "B<0>" LOC = "P15"; # SW0 
NET "B<1>" LOC = "P12"; # SW1 
NET "B<2>" LOC = "P5"; # SW2 
NET "B<3>" LOC = "P4"; # SW3 
 
NET "RES<0>" LOC = "P16"; # LED0 
NET "RES<1>" LOC = "P13"; # LED1 
NET "RES<2>" LOC = "P6"; # LED2 
NET "RES<3>" LOC = "P3"; # LED3 
 
NET "REMA<0>" LOC = "P86"; # LED6 
NET "REMA<1>" LOC = "P84"; # LED7 
NET "REMA<2>" LOC = "P83"; # LED8 
NET "REMA<3>" LOC = "P77"; # LED9 
 



Simulation Results: 
I have tested the functionality of the Start button and tested some of the cases that 
are indicated in the .sim file. Since used many times, below I provide the 2’s 
complement system representation of the selected numbers: 
Figure 1: 2's Complement Representation of Some 4-bit Numbers 

7 0111 -7 1001 
6 0110 -6 1010 
1 0001 -1 1111 
3 0011 -3 1101 

Below is the simulation code, and then, the simulation results. 

 
Up to this point, code is generic which I have made no modifications. 

 



I have set the initial values of A and B to 0000 here. So, in my simulation, I have 
assumed that the user starts using the FPGA board with the A=B=0000 switch 
combination (Start button un-pressed). Moreover, MCLK_period is set to 20 ns, 
which is the MCLK period defined in the .VHD file. 

 
Again, this part is generic, no modifications I have made. Below, my main 
contribution comes to the simulation. 

 



 
Here, I have provided the test cases. I have made the simulation to wait for 
(MCLK_period*99999)*100 seconds to move onto the next stimulus. 
MCLK_period*99999 corresponds to the half of the CLK_DIV period. I have 
multiplied it with 100 so that any operation can be finished in that time range. 
Actually, multiplying with, say, 10 would possibly be enough. I have multiplied it 
with 100 to separate results of operations from each other and get better visuals 
in the simulation part.  

First, I change B to 1, but left Start=0. In this time range, I expect no state 
transitions to compute. Next, I press Start and kept it pressed until the last 
operation in the code, so that test cases can be tested.  

See the screenshots I have taken from the simulation below. I will provide only 
some of the signals in the simulations for comprehensibility. The ones I will show 
will be necessary for the verification of the function of the code. If interested, you 
can run the .WCFG file I have provided to observe how the other signals change 
through the run.  

Also, please note that I will show the simulation variable values in decimal so that 
verification can be done easily, but in the code, everything is binary. 



When Figure 2 is observed detailly, it is actually a very good tool to understand 
the code we have just written. At first, everything is 0. Then, divisor (B) becomes 
1, but nothing changes. Then, Start becomes 1 (button is pressed). Still nothing 
changes, but actually the quotient and remainder is calculated and found as 0. 
Then, the test cases I have explained in the simulation code is done in order. Note 
that in the time being 𝐴𝐴 is constant, 𝑋𝑋 is subject to change. Same goes for 𝐵𝐵 and 𝑌𝑌. 
This is normal, the input (switch combination) does not change, while we change 
the corresponding number variables inside the code for calculations. 

To understand the simulation result, simply divide 𝒂𝒂 by 𝒃𝒃, and then check 𝒓𝒓𝒓𝒓𝒓𝒓 and 
𝒓𝒓. For example, look at 𝑡𝑡 = 2𝑠𝑠. −6 is divided by 3, and the quotient is -2 and 
remainder is 0, as it should be. 

Observe that when Start is signal is set back to 0 at the end (that is, Start button is 
not pressed anymore), everything stays as it is. Latest remainder (-1) and result 
(0) is being shown on the FPGA board by LEDs, and they will be continued to be 
shown as long as the user does not press the Start button and activates the circuit. 

  

Experimental Results on the FPGA Board: 
Since I do not have FPGA board due to circumstances, I have requested to a friend 
of mine to upload my code to her FPGA board and try the following cases: 5/2, 
−5/2, 5/−2 and −5/−2. The results are all correct and as follows (please note that 
4 rightmost bits are RES and 4 leftmost bits are REMA): 

 

Figure 2: Simulation Results 



 
Figure 3: FPGA Board: 5/2 

Above is 5/2. The remainder is 0001=1 and the result is 0010=2, as expected. 

 
Figure 4: FPGA Board: 5/-2 

Above is 5/-2. The remainder is 0001=1 and the result is 1110=-2, as expected. 



 
Figure 5: FPGA Board: -5/2 

Above is -5/2. The remainder is 1111=-1 and the result is 1110=-2, as expected. 

 
Figure 6: FPGA Board: -5/-2 

Above is -5/-2. The remainder is 1111=-1 and the result is 0010=2, as expected. 



Question 5.2 
FSM Design of the DAC: Design a finite state machine for the DAC addressing 
specifications given in the problem statement. Construct the minimum data path 
for this FSM. Specify functional blocks and all control inputs. Design the control 
unit and find the control input functions. 

 
Before presenting my design, let me introduce some of the variables. 
 
Table 2: Variables and their explanations 

VARIABLE EXPLANATION 
D Vector representing input switches 
B Vector representing input buttons 
X Latest number (result) computed 
Y Latest input number 
L Led output 
S Seven-Segment output 
P Button assignments 

 
There are 6 buttons. We require on of them to be pressed at a time. I will notate 
these cases with the assignments below: 
 
 
Table 3: Button Assignments 

P (3 downto 1) Operation Button on Board 
000 Addition B0 
001 Subtraction B1 
011 Negation B2 
010 XOR B3 
110 AND B4 
100 OR B5 
1x1 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒 

 
It may seem unnecessary at this point, but I will define a new variable 𝑉𝑉 (for Valid) 
that checks whether there is only 1 button pressed at a time, and that button is one 
of the 6 buttons we have defined. Since there are only 6 buttons on the FPGA 
Board, it may seem unnecessary, but it is a safe option. Also, as I said, it prevents 
multiple pushes. 
 



   P3  

 P2 P1 \ P3 0 1  

 00 1 1  

 01 1 0 P1 

P2 11 1 0  

 10 1 1  

 

K-Map 1: Table for V 

Therefore, 𝑉𝑉 = 𝑃𝑃(3)′ + 𝑃𝑃(1)′. So, except both P3 and P1 are 1, all other cases are 
valid. We can even make this V better by enforcing the condition that no two or 
more buttons are allowed to be pressed at the same time. The idea is simple, but 
the equation will look confusing. Below, I have written it. Note that inside the 
second parenthesis, while a button is 1, the rest is forced to be 0. So, desired 
condition is applied. This implementation of V will be useful in the upcoming parts. 
 
𝑉𝑉 Equation 
 
𝑉𝑉 = (𝑃𝑃(3)′ + 𝑃𝑃(1)′) (𝐵𝐵0′𝐵𝐵1′𝐵𝐵2′𝐵𝐵3′𝐵𝐵4′𝐵𝐵5 +  𝐵𝐵0′𝐵𝐵1′𝐵𝐵2′𝐵𝐵3′𝐵𝐵4𝐵𝐵5′ +
 𝐵𝐵0′𝐵𝐵1′𝐵𝐵2′𝐵𝐵3𝐵𝐵4′𝐵𝐵5′ +  𝐵𝐵0′𝐵𝐵1′𝐵𝐵2𝐵𝐵3′𝐵𝐵4′𝐵𝐵5′ +  𝐵𝐵0′𝐵𝐵1𝐵𝐵2′𝐵𝐵3′𝐵𝐵4′𝐵𝐵5′ +
 𝐵𝐵0𝐵𝐵1′𝐵𝐵2′𝐵𝐵3′𝐵𝐵4′𝐵𝐵5′)  
 
See the circuit design for V in the next parts for a better understanding. 
 
 
 
 
 
 
 
 
 



ASM Chart: 
 

 
Figure 7: ASM Chart (main) 

IDLE is the first state. For example, the device is turned on. Then, it starts in the 
state IDLE. I set X to 0 at this point, which is a free choice. As long as START is not 
received, it stays in IDLE state.  
 
When a button is pressed, START is 1, and IDLE goes to the next state MAP & 
COMPUTE. In this state, switches are read and depending on whether they are 
turned on or off, the resulting 2’s complement binary numbers is assigned to Y. 
similarly, buttons are read and depending on which ones are pressed or not, 
button assignment are done. At this point, these assignments are done in 
accordance with the Table 2 I have provided. 
 
If P is an invalid state of P, then, system stays in MAP & COMPUTE state. Otherwise, 
the corresponding operation is operated. After the operation is done, DISP & WAIT 
becomes the next state. 



In DISP & WAIT state, the result of the operation is transferred to LEDs and Seven-
Segment Display via corresponding variable updates. After the result is shown on 
the FPGA board, another START command is waited. At this point, the user sets 
the next input number that she will be using, and then presses one of the buttons. 
Therefore, START  becomes 1, and system goes back to MAP & COMPUTE state. 
 
Since it is not stated, this design does not stop functioning. In other words, it does 
not have an EXIT mode. After it is run once, it keeps going between these 3 states 
until is turned off externally by the user. 
 
Also, this design does not have a RESET mode either. So, the operations must be 
done over the latest result we have obtained. Note that both RESET and EXIT states  
are not necessary nor hard to implement operations. One can easily turn the FPGA 
off from its switch or RESET it by performing multiplication when all the switches 
are turned off. Since it is not required, I will not add such states: the lab manual 
states that the most minimal design is desired. However, for example, the two 
leftmost switches which we do not use can be introduced for these purposes. 
 

State Diagram: 

 
Figure 8: State Diagram (main) 



From ASM Chart, there were 3 states. For the minimal design, I have used 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐{log2 𝑛𝑛} -where n is the number of states- to find the minimal state assignment. 
Therefore, each state is of 2 bits. Same inputs in ASM Chart is used here as inputs. 
Since state transitions do not give out outputs in this design, there is no output. 

Before going on to the state table, I must point out a problem. P input is a 3-digit 
input. As a result, there are 4 inputs, and 2 states. Therefore, when writing next 
state equations, I have to deal with a 6-variable K-map. I do not want to do this, so 
I will introduce a new variable V, which I have mentioned under K-Map 1. V is the 
shorthand for valid. Since as long as the pressed button is valid, system moves on 
to the next state. Single variable V can be used here instead of the 3 digits of P. 
Please note that we need P to be a vector of 3 digits, it is the most minimal 
assignment for P. We exploit the values of P when we decide on which operation 
to be performed, so we do not actually use it for state transitions. Therefore, 
though we add an extra step to the design, this eases the circuit analysis and 
comprehensibility of the design. When V is introduced, ASM Chart is changed to: 

 
Figure 9: ASM Chart (alternative) 



Since we check for validity before reaching the vector decision box (purple), vector 
decision box does not need an otherwise output in this design. I have used dashed 
lines to indicate the change in the chart. It should be interpreted as solid lines by 
the reader. 

With this move, the state diagram is also simplified. The new state diagram and 
table is as follows: 

 
Figure 10: State Diagram (alternative) 

 

State Table: 
Table 4: State Table 

Present State(𝑄𝑄1𝑄𝑄0) Input(Start) Input (V) Next State (𝑄𝑄1+,𝑄𝑄0+) 
00 0 𝑥𝑥 00 

 1 𝑥𝑥 01 
01 𝑥𝑥 0 01 

 𝑥𝑥 1 11 
11 0 𝑥𝑥 11 

 1 𝑥𝑥 01 
10 𝑥𝑥 𝑥𝑥 00 

Now we are to construct 4-variable K-maps, thanks to this new variable V. Please 
note that for all inputs, next state of the state 10 (undesired) is set to 00 to be safe. 



K-Maps: 
First, let us construct the K-map for 𝑄𝑄1: 
K-Map 2: Q1 

     Start  
 Q1 Q0 \ Start V 00 01 11 10  
 00 0 0 0 0  
 01 0 1 1 0 Q0 

Q1 11 1 1 0 0  
 10 0 0 0 0  
   V    

 

𝑄𝑄1 Equation 
Therefore, it is concluded that 𝑄𝑄1+ = 𝑄𝑄1𝑄𝑄0𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�������  + 𝑄𝑄1���𝑄𝑄0𝑉𝑉 

 

Next, construct K-map for 𝑄𝑄0: 
K-Map 3: Q0 

     Start  
 Q1 Q0 \ Start V 00 01 11 10  
 00 0 0 1 1  
 01 1 1 1 1 Q0 

Q1 11 1 1 1 1  
 10 0 0 0 0  
   V    

 

𝑄𝑄0 Equation 
Therefore, it is concluded that 𝑄𝑄0+ = 𝑄𝑄0 + 𝑄𝑄1��� 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 

 

Circuit Designs: 
The figure below is for Control Unit. 



 
Figure 11: State Circuit 

In the upcoming figures, I will represent some circuits that operate inside the DAC. 
In the end, I will provide Control Unit and Data Path properly. 

 
Figure 12: Start, V and P1, P2, P3 Constructor Circuit 

 

Observe that both Start, and V is 0. Let us press one of the buttons: 



 
Figure 13: Circuit in Fig. 12 with Button0 pressed 

Start was controlling whether any button is pressed. When B0 is pressed, it turned 
on. Also, since there is only one button pressed and P=000 is a valid input, V=1. 

Observe the below case when two buttons are pressed: 

 
Figure 14: : Circuit in Fig. 12 with Button0 and Button3 pressed 



Because there is at least one pressed button, Start signal is turned on. However, 
this is not a valid input (Pressing two buttons at the same time is not acceptable), 
so V=0. Therefore, the system is still in MAP & COMPUTE state, waiting for an 
acceptable button input. 

 

Roughly, Datapath is as follows: 

 
Figure 15: Data Path (main) 

Button inputs go into P1 P2 P3 Assignment block, which I have just provided above 
in the previous pages. As extra, I have added clock input and Load input (Start), so 
that it can be controlled. This P3 P2 P1 the becomes the inputs of the 
Demultiplexers that are used to choose the operation. 

8-bit input is transferred is transferred to Y via D flip-flop. It is driven by clock and 
Start input, just as the case of P1, P2, P3 Assigner. Then, this Y value goes into the 
first Demodulator. 

X is also clock driven, but different from the other two, it is controlled by V input. 
So, if the new button input is not valid then X will not be updated, meaning that it 
keeps displaying the last result. X value then goes into the second Demodulator. 

For both X and Y’s D flip-flops, please note that this is a schematic. I know that D 
flip-flop does not work with an input of 8-digits. In an expanded version, each 



input bit 𝐷𝐷𝑖𝑖 should go into separate D flip-flops, thus generating 𝑌𝑌𝑖𝑖 as a result. 
Similarly, each result bit 𝑋𝑋𝑖𝑖  should go into separate D-flip flops, thus generating 𝑋𝑋𝑖𝑖 . 

Demultiplexers lead X and Y to the correct operator. Demultiplexers perform this 
decision by considering 𝑃𝑃3𝑃𝑃2𝑃𝑃1 select bits they take into. I have clearly defined the 
operations and the operations that correspond to them in Table 2. I have 
considered the output select bits of demultiplexers in this order (from up to 
down): {000, 001, 011, 010, 110, 100, 101, 111}. When one operation is selected, 
the rest demultiplexer outputs become 0. 0 ∨ 0 = 0 ∧ 0 = 0 ⊕ 0 = 0 − 0 = 0 +
0 = 0� = 0. Therefore, they do not have any effect in the output of the large OR at 
the end of the circuit.  

At last in the end of the circuit, there are D flip-flops for L and S, controlling Led 
Outputs and Seven Segment Display. They are updated at each clock cycle and as 
long as the button input is valid (V=1). 

I have already provided the circuit design for 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑉𝑉 and 𝑃𝑃1,𝑃𝑃2,𝑃𝑃3. I will not 
provide them again. Let me just write the equations representing them. V is 
already calculated in terms of 𝑃𝑃𝑖𝑖 . 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 signal does not have such safe conditions. When any of the buttons (one or 
more) is pressed, Start becomes 1. Therefore, its equation is simpler when 
compared to 𝑉𝑉 and as follows: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 Equation 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐵𝐵1 + 𝐵𝐵2 + 𝐵𝐵3 + 𝐵𝐵4 + 𝐵𝐵5 + 𝐵𝐵6 

Finally, we write the equation of 𝑃𝑃1,𝑃𝑃2 and 𝑃𝑃3: 

𝑃𝑃1,𝑃𝑃2,𝑃𝑃3 Equations 
𝑃𝑃3 =  𝐵𝐵0′𝐵𝐵1′𝐵𝐵2′𝐵𝐵3′𝐵𝐵4′𝐵𝐵5 +  𝐵𝐵0′𝐵𝐵1′𝐵𝐵2′𝐵𝐵3′𝐵𝐵4𝐵𝐵5′ 

𝑃𝑃2 = 𝐵𝐵0′𝐵𝐵1′𝐵𝐵2′𝐵𝐵3′𝐵𝐵4𝐵𝐵5′ +  𝐵𝐵0′𝐵𝐵1′𝐵𝐵2′𝐵𝐵3𝐵𝐵4′𝐵𝐵5′ +  𝐵𝐵0′𝐵𝐵1′𝐵𝐵2𝐵𝐵3′𝐵𝐵4′𝐵𝐵5′ 

𝑃𝑃1 = 𝐵𝐵0′𝐵𝐵1′𝐵𝐵2𝐵𝐵3′𝐵𝐵4′𝐵𝐵5′ +  𝐵𝐵0′𝐵𝐵1𝐵𝐵2′𝐵𝐵3′𝐵𝐵4′𝐵𝐵5′ 

Now, I think that I do not have to show the circuit inside D flip-flops since we have 
never done them in the examples too. Instead, I will draw the circuits inside 
Demultiplexers, Addition, Subtraction and Negation blocks. By providing their 
circuit diagrams, I believe that there will not be any black box left to explain. 



 
Figure 16: Demultiplexer 

Above, I have provided the circuit inside the demultiplexer. Again, this is mostly a 
representation. In fact, AND gates’ inputs cannot be 1 bit and 8-bit at the same 
time. Either we convert 𝑃𝑃𝑖𝑖 to 8-bit (can be easily done by repetition of the bits) 
before putting into AND gates, or for each bit, we create copies of the system above. 

Now, let us focus on the subtractor. Here, our aim is to construct an 8-bit 
subtractor. 

 
Figure 17: 8-bit Subtractor 

where Full Adder component is as follows (from lecture notes): 

 
Figure 18: Full Adder 



8-bit adder is also similar to the subtractor. This time, 𝑐𝑐0 = 0, so we can eliminate 
XOR gates in the subtractor design. 

 
Figure 19: : 8-bit Adder 

 

 

At last, we  are to construct Negation block. 

 
Figure 20: 8-bit subtractor 

 

With this 8-bit negator, I have completed the explanation of the block used in the 
Datapath. Having explained all details of the data path, I will add here an 
alternative data path, which reduces cost by eliminating one of the demultiplexers 
and OR gate. The operation choice is done after all the operations are calculated in 
this design, so I am not sure whether it is optimal or not. However, it should reduce 
cost in terms of being decreasing the number of gates used. See the circuit below: 



 
Figure 21: Data Path (alternative) 

No further explanation is necessary since the blocks in this design are mostly 
unchanged. DMX is replaced by a MUX because with this design, circuit chooses 
the desired operation at end. 

As one can see in Figure 15 and Figure 21, I have used D flip-flops at the end of the 
circuit to update L and S. We can relax this condition and let the result be displayed 
on the LEDs and Seven-Segment display directly. This can further reduce cost. 
Please note that. For that case, I will provide the circuits for these assignments. 
One can construct LED and Seven-Segment assignment circuits. The first one is 
straightforward. Using the notation 𝑀𝑀 for the 8-digit output of MUX in Figure 21: 

 
Figure 22: LED Assignments 

7-Segment Display assignment is also straightforward, but a bit more detailed. 
Again, M is assigned to 7 LEDs of the display. But for example, if the result is 
00000000, we light up a, b, c, d, e, f, but not g. So, the result is shown on the 7-



Segment display in decimal. This increases readability but requires the assignment 
of each segment individually for each digit. Furthermore, below, I will provide this 
for the 2-bit case only (range is {0,1,2,3}). For the 8-bit case, this manual 
assignment by using simple gates requires a great amount of time and not 
necessary for the purpose at the moment. So, suppose M has 2 digits and 
understand the circuit below. Then, for higher digit cases, same logic applies with 
more gates and assignments. 

 

 
Figure 23: Seven-Segment Display LED Assignments for 2 bits 

From this figure, one can verify that 0 lights up a, b, c, d, e, f but not g. 

Codewise, SSD it is easier to implement using if-else statements. Moreover, seven 
segment display for 8-bit numbers code is already available to us (ELEC 204 
takers) in the GitHub webpage of Mr. Arash. So, as long as the way to construct a 
Seven-Segment display is understood, the rest is just straightforward. 

 

 

https://github.com/arash-codes/Elec204-labs/tree/master/seven_segment_with_decimal_point/sevensegtest


 

 
Figure 24: 7 - Segment Display LED assignments1 

Considering these assignments, circuits with for number with any digits can be 
constructed by following the logic path described above. So, I will end the 
discussion about 7-Segment Display here. 

 

Up to this point, I have provided all the details about Data Path, and provided its 
circuit design too. Now, at last, I will express the control unit as we did in the class: 

 

 
Figure 25: Control Unit 

I have already provided the equations describing 𝑃𝑃𝑖𝑖s in the previous parts. Since 
all 𝑃𝑃𝑖𝑖s occur in MAP & COMPUTE state we can also express them in terms of 𝑄𝑄1 and 
𝑄𝑄0. Considering MAP&COMPUTE state is assigned to 01, we can write the 
condition 𝑄𝑄�1𝑄𝑄0 for each 𝑃𝑃𝑖𝑖 . 

 

 

 

 
1 Image is taken from https://www.electronics-tutorials.ws/blog/7-segment-display-tutorial.html 

https://www.electronics-tutorials.ws/blog/7-segment-display-tutorial.html


Extra Functionalities (LAB Project) 
See Figure 21. MUX at the end still has 2 inputs empty. So, we can add 2 extra 
functionalities to this design, without changing it. In this section, I will provide 2 
new extra functionalities. One of these functionalities will multiplication since it is 
an essential operation missing. Also, we have implemented division in the 
Question 1, so why would not we also construct multiplication here for a complete 
picture? The second will be Lazy Caterer’s Sequence. It is an amusing formula that 
can be used to find the maximal number of pieces you can slice a pizza with n cuts. 

First, let me first put these new operations into the data path I have already 
provided above in Figure 21. 

 
Figure 26: Updated data path 

It is easy to put the operations boxes as in Figure 26, but now we have to introduce 
how the circuit performs these operations with the use of simple gates. From Table 
3, we read that states 101 and 111 are unassigned. So, I assign 101 to the 
multiplication operation, and 111 to the Pizza Slicer. With these new assignments, 
Validness check variable 𝑉𝑉 is now restricted only to single button push check. 
Thus, its equation reduces to:  
𝑉𝑉 =  𝐵𝐵0′𝐵𝐵1′𝐵𝐵2′𝐵𝐵3′𝐵𝐵4′𝐵𝐵5 +  𝐵𝐵0′𝐵𝐵1′𝐵𝐵2′𝐵𝐵3′𝐵𝐵4𝐵𝐵5′ +  𝐵𝐵0′𝐵𝐵1′𝐵𝐵2′𝐵𝐵3𝐵𝐵4′𝐵𝐵5′ +
 𝐵𝐵0′𝐵𝐵1′𝐵𝐵2𝐵𝐵3′𝐵𝐵4′𝐵𝐵5′ +  𝐵𝐵0′𝐵𝐵1𝐵𝐵2′𝐵𝐵3′𝐵𝐵4′𝐵𝐵5′ +  𝐵𝐵0𝐵𝐵1′𝐵𝐵2′𝐵𝐵3′𝐵𝐵4′𝐵𝐵5′  



This does not change the state diagram in Figure 10 and the state table in Table 4. 
Therefore, the rest does not change. Same K-maps are to be constructed, along 
with the same state equations. In result, same Control Unit and the updated Data 
Path I have provided above are valid. I only must update Figure 12: Start, V and 
P1, P2, P3 Constructor Circuit, just the part with V though. The extra check 
condition for V is removed now, as I have explained just above and provided the 
new equation for V. When Figure 12 is updated, it becomes as follows: 

 
Figure 27: Updated Start, V and P1, P2, P3 Constructor Circuit 

After adding these necessary modifications to the circuit, let me start with the 
multiplication operation. 

 

1. Multiplication 
8-bit multiplication is a bit complicated process when it is compared to the other 
operations in 2’s compliment signed arithmetic operations such addition / 
subtraction. Unsigned version is a bit simpler and easier to understand and 
implement. However, since we work with 2’s complement signed 8-bit numbers, I 
will not cut corner and implement this version. 

Consider we have two 8-bit numbers 𝐴𝐴 and 𝐵𝐵. For regular multiplication, 𝐵𝐵0 is 
multiplied with the all bits of 𝐴𝐴 first. Then, 𝐵𝐵1 is multiplied with 𝐴𝐴, and written 
below the preceding operation with 1 shift to the left. This is performed for all bits 
of 𝐵𝐵 and then summed. At least this is what happens in the unsigned version. 



 
Figure 28: 8-bit binary multiplication2 

This operation is simple and easy to understand as I have noted. I have provided 
this since it is easier to understand the 2’s complement signed version after 
reviewing this and understanding the notation. 

 
Figure 29: 8-bit signed 2's complement system multiplication3 

So, the procedure to be followed is as follows: 

1) Calculate 1st row as usual, negate the MSB and add an extra  bit of 1 as the 
new MSB. 

2) In the intermediate rows, calculate and write rows as usual, then negate 
MSB. 

3) Calculate the last row as usual. Then, negate all bits, except the MSB. As in 
the first row, add an extra bit of 1 as the new MSB. 

4) Sum all. 

Since we work with 8-bit numbers, it will be a long and kind of complex circuit, but 
the logic of the circuit is explained above and is not actually much a complicated 
one. 

As a last remark before the circuit design, note that  output is 16-bit long. FPGA 
board has only 8 LEDs. Therefore, the result on the LEDs should not be of interest 
and only the Seven-Segment Display should be considered. I can implement this 

 
2https://en.wikipedia.org/wiki/Binary_multiplier#Unsigned_numbers 
3 https://en.wikipedia.org/wiki/Binary_multiplier#Signed_integers 

https://en.wikipedia.org/wiki/Binary_multiplier#Unsigned_numbers
https://en.wikipedia.org/wiki/Binary_multiplier#Signed_integers


extra condition on the Data Path design, but it is really not so necessary and 
complicates the design for such an obvious thing. So, I only suggest the user to 
consider the Seven-Segment output for this operation and ignore the LED outputs. 

 
Figure 30: 8-bit signed 2's complement multiplication (cropped) 

The figure may not be clearly visible, so I suggest the reader to zoom in. I have 
skipped some of the intermediate multiplication operations since the are the same 
as I have provided representative circuits above. I did not want to complicate the 
figure more since it is difficult to read even in this simplified view. In the above 
circuit, first 𝐵𝐵0 is multiplied with 𝐴𝐴 at the up-right corner. The LSB of this operation 
is assigned to 𝑃𝑃0. Then, MSB is negated and 1 is added to the left of the  MSB and a 
new 8-bit integer is formed. Then, this 8-bit integer is summed with the result of 
the multiplication of 𝐵𝐵1 × 𝐴𝐴 (after negating its MSB). The LSB gives out 𝑃𝑃1. With 
𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜, this operation gives us an 8-bit number when we exclude 𝑃𝑃1. Then, this 8-bit 
integer is summed with 𝐵𝐵2 × 𝐴𝐴 (after negating its MSB). Same operations as above 
applied. Up to the last line in Figure 29, same intermediate operations are applied. 
In the last line, all digits are negated except the MSB, so it is kind of the opposite of 
what is done up to this point. As usual, this is summed with the result of the latest 



summation. The LSB of this summation gives out 𝑃𝑃7. Now, there is only 1 
operation is left. We again construct the 8-bit integer by using 𝐶𝐶out of the 
summation and excluding 𝑃𝑃7. Then, at last, we sum this with 10000000. The result 
of this summation gives us all the left bits of the multiplication, ranging from 𝑃𝑃8 to 
𝑃𝑃15. Therefore, the multiplication operation ends. Note that in the figure, I have 
put the bits that form the result of the multiplication to the very right of the circuit. 
This way, I have wanted to make the result more understandable and easier to 
detect. This 16-bit result cannot be shown on the LEDs since we do not have 16 
LEDs on the FPGA Board as I have mentioned. Therefore, the 7-Segment Display 
result should be considered for the result. 

Blow, I provide the full (complete) version of the multiplier in Fig. 30. It will be 
difficult to read, so Fig. 30 is satisfactory enough, you can skip this image below. 

 

 
Figure 31: : 8-bit signed 2's complement multiplication (complete) 

 

 

 

 



2. Lazy Caterer’s Sequence (Pizza Slicer) 
 

Lazy Caterer’s Sequence (formally, known as central polygonal numbers) is 
basically gives us a formula that describes how many pieces we can split a circle 
with a fixed number of straight cuts at most. It is entertaining to consider the circle 
as a pizza (or a pancake, bread, etc.) and the cuts as knife cuts. It does not 
guarantee that the pieces are going to be equal. Therefore, it may not be a fair way 
of slicing a pizza, but at least it gives at most how many people can eat a pizza 
(supposing we can only slice the pizza with a limited number of straight cuts, 
because, why not right?). It can be a challenging activity, and in real life, a person 
who has the FPGA Board that performs this operation can challenge anyone in a 
pizza slicing activity. 

The formula is as follows: 

𝑝𝑝 =
𝑛𝑛2 + 𝑛𝑛 + 2

2
 

where 𝑝𝑝 is the number of pieces and 𝑛𝑛 is the number of cuts. As I have noticed, 
division is a very much complicated operation to perform with simple circuit 
elements. Therefore, I will provide a circuit that can calculate 2𝑝𝑝, that is, twice of 
the maximum number of pieces we can get. You can think it as we have 2 pizzas, 
so we multiply the result with 2. Thus, the circuit I am about to provide is going to 
calculate the maximum number of slices that we can extract out of 2 pizzas with a 
fixed number of cuts, 𝑛𝑛. 

 

Since I have provided the multiplication operation in the previous part, I will use 
a simple block for the sub-circuit that performs the multiplication operation. This 
circuit has a one input, n. I suppose this is the 8-bit 2’s complement number 
provided by the user with the use of switches. So, 𝑛𝑛 here corresponds to 𝑌𝑌 in the 
data path in Figure 26. The operations are to be done are multiplication, 
summation, and another summation in order. Before moving on to the circuit, it 
may be beneficial to remind that 2 in the above equation is represented with 
𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 in 2’s complement signed 8-bit representation. 



 
Figure 32: Pizza Slicer Circuit Design 

In the design above, 𝑛𝑛[7: 0] is the input 8-bit signed integer. 8-bit signed 
multiplication operation in 2’s complement system is explained, and its circuit 
design is in Figure 30. 8-bit signed addition operation in 2’s complement system 
is explained, and its circuit design is in Figure 19. The integer 2 is 00000010 in 8-
bit signed 2’s complement system. Therefore, there is nothing left out, and this 
operation can work properly. See some of its outputs below: 

 

 
Figure 33: Pizza slicer for 𝑛𝑛=0 

Zero cuts split 2 pizza into two slices, which is obvious. 

 

 
Figure 34: Pizza slicer for 𝑛𝑛 = 16 

With 8 cuts, one can have at most 74 slices out of 2 pizzas. 
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